为了实现对猪的精准活体身份识别,基于现有的双线性卷积神经网络(Bilinear-CNN),提出了一种非侵入式的猪面部识别模型。利用在图像特征提取上具有优良效果的VGG-16网络作为特征提取器,并将不同层次的提取特征做外积融合以形成最终的个体身份特征,最后,利用全连接层对其进行分类。实验结果表明:识别模型能对不同光照、角度、表情和姿态的猪脸进行识别,在200头猪的2 110张测试图像集中,识别准确率达到95.73%。