摘要

为实现大型农机零部件的快速修复与更换,该文针对3D打印协同数控成形大型零件中的折线拐点金属过堆积、工件翘曲变形、层厚难以实时调整等问题,提出数控系统与电子束成形相结合的3D打印切片算法与分区扫描策略。为提高切片速度,实现成形过程中的层厚实时调整,采用反向光线追踪算法对三维模型渲染切片,通过MS(marching squares)算法提取二值图像的坐标序列,快速获取指定层的轮廓坐标;为避免成形过程中电子枪运行速度不均匀引起的金属过堆积现象,选用B样条基函数对轮廓数据进行曲线插值,结合数控系统的曲线插补命令,实现恒定线速度成形。针对大型零件在成形过程中的变形问题,采用六边形分区与平行线变角度扫描技术,根据各分区图案的形心欧式距离规划扫描顺序,实现变形控制。结果表明:采用非均匀有理B样条曲线和直线分段插值后,拟合曲线对原始多重曲面截线的逼近误差范围与切片数据相比减少了30%。选用网格数量为1 483 132的STL(stereolithography)模型进行效率测试,该算法切片用时90 s,与商用软件Magics15.01切片相比用时减少了34.6%,与开源软件Cura15.06切片相比用时减少了31.4%,研究结果可为大型零件成形过程中的层厚动态调整及变形控制等提供新的思路。