摘要

基于一维心电信号,提出了一种改进的卷积双向长短时记忆网络以实现心律失常的自动分类。基于卷积神经网络(CNN)及其注意力机制提取关键特征,搭建双向长短时记忆网络(BiLSTM)挖掘心电信号的时间相关性,最终实现心电信号的自动分类。在MIT-BIH心律失常数据集上进行的实验结果表明,该方法在获得总体精度99.32%的基础上,实现了稀有类别分类的提升,其S与F类分类精确度分别提升了1.02%和10.07%,召回率分别提升了12.52%和4.25%,满足心律失常自动分类的检测要求。