摘要
现有仿生模式识别分类器难以解决含有多个聚集点、非线性和稀疏性样本的分类问题。因此,引入特征分类贡献度,提出了基于改进的迭代自组织数据分析(M-ISODATA)的超球覆盖仿生模式识别算法。首先引入马氏距离对自组织数据分析方法(ISODATA)的欧氏距离替换,并引入熵权法对马氏距离进行加权以赋予各特征不同的贡献度;同时为了去除干扰样本点,引入改进的局部离群因子检测方法(M-LOF)对样本进行训练,减少了不同类别流形之间的重叠区域。再利用改进的自组织数据分析方法(M-ISODATA)对每类训练样本点动态聚类,寻找到同一类的多个小类覆盖区中心后,用超球进行该类的有效覆盖,并对落入重叠区域的测试样本点进行二次划分,实现测试样本的正确分类。最后在iris数据集上验证该算法的有效性,并将该算法应用于雷达辐射源信号的分类识别。实验结果表明,该算法具有很好的拒识、免重训能力,对于雷达信号的识别率能达到97.29%,相比于传统典型模式识别算法具有更好的识别能力。
-
单位中国电子科技集团公司第二十九研究所; 西南交通大学