摘要
基于大数据机器学习的智能软件研发过程需要综合运用软件工程、数据与领域知识工程、机器学习等多方面的知识和工具,涉及的研究主题和人员角色众多,技术实现手段复杂,研发难度大.面向智能软件的需求工程因此需要面对领域知识、业务知识、数据科学交织带来的挑战.然而,如何将领域知识和端到端的机器学习技术恰当地融合到给定的业务流程之中,以及如何应对工业、医疗等高可信要求场景中的可解释性需求,仍是亟待探索的重要研究问题.调研了近年来面向机器学习应用的需求工程研究文献,对该领域的发展现状、核心问题和代表性方法进行综述.归纳后,提出了面向机器学习应用的可解释性需求分析框架.基于该框架,通过一个工业智能应用案例分析了未来待研究的重要问题,展望了可行的研究路径.
- 单位