摘要

为了提高NMF方法在方差差异明显的多模态过程中的监视效果,提出一种基于LPD-NMF的多模态过程监视方法。对多模态过程训练数据运用局部概率密度(LPD)进行预处理,消除方差差异明显的多模态特性。运用非负矩阵分解算法进行降维和局部特征提取,计算每个低维样本与其k个近邻欧氏距离的平方和,使用核密度估计(KDE)算法来确定控制限进行多模态过程监视。将该方法应用于数值例子和半导体数据,结果表明,其过程监视结果优于常规kNN、WkNN和LPD-kNN方法。