摘要
基于图的无监督跨模态哈希学习具有存储空间小、检索效率高等优点,受到学术界和工业界的广泛关注,已成为跨模态检索不可或缺的工具之一.然而,图构造的高计算复杂度阻碍其应用于大规模多模态应用.主要尝试解决基于图的无监督跨模态哈希学习面临的两个重要挑战:1)在无监督跨模态哈希学习中如何高效地构建图?2)如何解决跨模态哈希学习中的离散值优化问题?针对这两个问题,分别提出基于锚点图的跨模态学习和可微分哈希层.具体地,首先从训练集中随机地选择若干图文对作为锚点集,利用该锚点集作为中介计算每批数据的图矩阵,以该图矩阵指导跨模态哈希学习,从而能极大地降低空间与时间开销;其次,提出的可微分哈希层可在网络前向传播时直接由二值编码计算,在反向传播时亦可产生梯度进行网络更新,而无需连续值松弛,从而具有更好的哈希编码效果;最后,引入跨模态排序损失,使得在训练过程中考虑排序结果,从而提升跨模态检索正确率.通过在3个通用数据集上与10种跨模态哈希算法进行对比,验证了提出算法的有效性.
-
单位四川大学; 成都瑞贝英特信息技术有限公司