摘要

针对轴承在数控车间生产中易发生故障且对轴承故障预警困难的问题,提出了一种基于XGBoost算法和AR(I)MA自回归模型的数据驱动的故障诊断和预警方法。首先使用XGBoost算法将轴承的历史数据划分为正常、滚珠故障、外圈故障和内圈故障4种状态,然后使用AR(I)MA模型来预测轴承在未来一段时间内的振动信号变化,再将预测出的振动信号进行降噪和特征提取后输入到训练好的XGBoost中进行故障诊断。使用PRONOSTIA平台采集的轴承工作数据进行实验,结果表明,文章方法可以准确预测出轴承短期内的振动信号并诊断出可能发生的故障,证明了该方法在轴承的故障诊断和预警中的可行性与正确性。