摘要
医院集中供暖系统一次侧流量受多种不确定因素影响。为了降低输入空间维度、节约运算成本、提高预测精确度,提出了一种基于随机森林(RF)特征重要性评估-遗传算法(GA)优化支持向量机(SVM)参数算法的预测模型。首先利用RF算法对特征变量实施重要性评估,利用交叉验证法对特征变量进行过滤,构建供暖系统影响因素指标体系,其次利用遗传算法优化支持向量机参数建立回归预测模型(RF-GA-SVM),最后结合某医院集中供暖系统数据进行了实例分析并与RF预测模型、GA-SVM预测模型进行了对比。预测误差分析表明,本文提出的预测模型(RF-GA-SVM)降低了输入空间维度,避免了局部最优,提高了预测精确度。
- 单位