摘要
在对文档集合进行话题分析的过程中,为描述文档中单词间的依赖关系,提高话题分析的效果,提出一种基于反馈递归神经网络的嵌入式向量生成及话题模型。在将单词表示为One-hot向量后,采用递归神经网络将文档嵌入在低维的向量空间。在文档的嵌入式向量计算过程中,采用LSTM(long short-term memory)描述单词间的前向依赖关系,提出一种反馈神经网络用于描述单词间的后向依赖关系。在话题分析模型中,采用原文档和变异文档对作为正样本,采用原文档和随机文档对作为负样本进行模型的训练。实验结果表明,该方法时间和空间复杂度低,具有更好的话题分析效果。
-
单位北京理工大学; 河南工程学院