摘要

本研究在全国大尺度空间范围内,基于机器学习识别稻米镉(Cd)、砷(As)富集的重要影响因素,探究了中微量元素对稻米Cd、As超标的贡献率并构造了生物有效性模型。首先,通过决策树算法构造中微量元素判别Cd、As超标的预测模型,其预测精度分别为95.55%、97.55%,表明中微量元素是识别稻米Cd、As超标的重要指标;其次,利用随机森林算法筛选影响稻米Cd、As富集的主控因子,不同区域的主控因子表现出明显差异,其单一因子主要驱动的Cd富集在不同区域的差异表现为:华东片区pH的贡献占主导、华南片区的交换性钙(Ca)和东北片区的土壤有机质(SOM)分别占主要贡献,而有效铁(Fe)对As富集表现出特异性的区域贡献(如华东、华南和西南片区);最后,将各区域确定的主控因子引入构建土壤-稻米生物有效性模型,其中,Cd、As的生物有效性九因子模型在不同片区的决定系数最高,分别为0.680、0.664(P<0.05)。本研究为大尺度地域水平上稻米Cd、As重金属污染防控和环境管理提供了科学依据和决策支撑。