摘要

针对港口载煤列车的卸车调度流程主要依靠工人经验进行调度作业,存在决策时间长、作业冲突和列车在港时间过长等问题。以列车在港时间最少为总优化目标,在已知列车到港时间及堆垛与煤种对应关系的前提下,考虑工作机械可用性、作业流程可达性及其相互约束关系等因素,构建了卸车调度数学模型。提出了一种基于改进樽海鞘优化算法的优化调度方法。引入自适应惯性权重,可有效地提高算法收敛速度;引入随机柯西变异策略,可有效地提高算法寻优能力。5个测试函数的测试结果表明:相比于樽海鞘优化算法、自适应樽海鞘优化算法、粒子群算法与鲸鱼优化算法,改进樽海鞘优化算法收敛速度更快,精度更高。港口堆场作业实际数据的仿真实验表明:改进樽海鞘优化算法可优化出满意的卸车调度任务,减少了火车总在港时间,提高了港口总体的工作效率。