摘要
电缆终端局部放电缺陷特征短暂,缺陷范围与外部环境纠缠,很难准确定位,需要结合温度特征和模式识别特征共同检测,本文利用超声红外热成像的优势,提出基于超声红外热像的电缆终端局部放电缺陷检测方法,方法利用图像梯度化、灰度化处理采集到的电缆终端局部放电缺陷特征超声红外热成像图,并通过智能模式识别处理方法抑制采集图像的复杂背景,删除包含在电缆终端局部放电缺陷特征红外图像中的大面积地物及地面;根据K-means聚类算法,圈定疑似局部放电缺陷特征范围,构建局部放电缺陷范围模板,经匹配参考范围后,得出疑似局部放电缺陷范围的温度特性信息,诊断电缆终端是否存在局部放电缺陷。实验结果表明,该方法可有效获取电缆终端局部放电缺陷部位,检测不同类型的电缆终端局部放电缺陷的平均精准率高达98%,平均漏检率为1%。