摘要

随着人们对场景文本检测领域的探索,对于自然场景中较规则文本的检测结果较好,然而对于任意方向的文本和复杂背景图像文本检测结果依然不理想。基于此,提出了一种改进的深度关系推理图网络模型。模型通过不同于anchor思想的文本组件预测部分,直接预测文本行,然后利用深度关系推理网络,推理出待检测文本行。同时引入Resnet50和SENet网络,提高模型特征提取能力和模型鲁棒性。通过在CTW1500和ICDAR2015两个数据集上对改良的模型进行评价,证明了改进算法的可行性。