摘要

针对在PCB生产过程中出现漏孔、鼠咬、开路、短路、毛刺、余铜、灰尘、划痕等缺陷而影响其后期使用的问题,提出了一种基于Faster R-CNN算法的PCB缺陷检测方法。该方法以ResNet-101为基础骨干网络构建特征金字塔网络,采用Soft-NMS算法对预选框进行筛选,然后使用在线困难样本挖掘方法,将损失值较高的困难样本集中进行处理,提高网络对复杂PCB缺陷样本检测的精确度。实验结果表明,改进后的Faster R-CNN缺陷检测方法可以对各类PCB缺陷进行准确定位和分类,平均检测精度达到93.76%,相较于传统Faster R-CNN方法提高了24.5个百分点,对PCB缺陷全自动检测的研究有一定参考价值。