摘要
工业生产过程的故障成因颇为复杂,一种故障的故障特征可能有多种表现形式,而多种故障又有可能表现出一种故障特征。因此单模型、单因素的故障诊断方法已显其不足。提出了改进的证据更新的动态故障诊断算法,并结合人工智能方法应用到硝酸生产过程故障诊断系统中。该方法通过对模糊神经网络的描述来确定故障诊断的辨识框架,应用新型的模糊推理方法生成诊断证据,诊断证据再基于改进的证据更新规则来实现证据的动态更新,根据结果来进行故障决策,从而解决了故障模式多样性、故障诊断动态性以及故障特征不确定性的问题。经实例验证,该方法的应用可提高故障诊断确诊率。
-
单位沈阳工业大学; 自动化学院