摘要
提出了一种融合超像素和CNN的CT图像器官主动轮廓分割方法。用超像素SLIC方法将CT图像网格化并分配标签;将网格化后图像作为数据集训练CNN网络分割出器官(如肝脏、肺部等)边界超像素,并将这些超像素的种子点连接成为粗分割边界;将粗分割边界作为初始轮廓,进行模糊主动轮廓分割得到CT图像中器官的边界。经过实验对比,该方法对肺部CT图像的分割平均DC系数达到97%、平均ASD系数达到1.23 mm。在肝脏CT图像方面与参考算法进行相比,在保证分割精度的前提下,VOE系数平均减少1%,切片图像的分割时间平均提高10 s。
-
单位大连外国语大学