高校图书馆图书个性化推荐没有得到很好的推广和实施,一个重要原因是用户对图书的评价不足。因此,提出了一种基于兴趣的高校图书推荐算法。该算法较好地解决了协同过滤算法无法使用和评分不足的问题。同时,将流行与反向流行的特征结合,使其更接近读者的行为。实验表明,该算法优于传统的协同过滤推荐算法,能够满足实际需求。