本文建立了一种新的高光谱图像压缩感知重建模型,编码端采用块对角的Noiselet测量矩阵对每一谱带进行独立采样,解码端首先建立高光谱图像低秩稀疏表示模型,分解为低秩与稀疏成分,并对低秩成分在空间维进行稀疏分解,进而构建联合谱间低秩性先验与谱内空间稀疏性先验的凸优化重建模型,并提出模型求解的增广拉格朗日乘子迭代算法,通过引入辅助变量与线性化技巧,使得每一子问题均存在解析解,降低了模型求解的复杂度.实验结果验证了本文模型及其算法的有效性.