摘要
为了及时发现抽油机故障,减少生产成本,提高生产效率,通过分析不同形状的抽油机示功图来及时准确地判断抽油机工作状况很有必要。传统人工识别方法不能实现抽油机工况实时诊断,而传统智能算法识别准确度低,故提出一种基于栈式稀疏自编码器的抽油机示功图识别方法,用于抽油机故障诊断。该方法通过栈式稀疏自编码器自动提取示功图数据深层可分性特征,然后利用学习到的特征结合对应的样本标签通过支持向量机进行有监督训练与分类。将采集的中原油田实测示功图对该方法进行实验,结果表明该方法具有较高的示功图识别速度和识别准确度。该方法为快速准确地进行抽油机故障诊断提供了参考。
-
单位洛阳乾禾仪器有限公司; 机电工程学院; 河南科技大学