摘要
针对现有无人驾驶方程式赛车目标检测算法运算量大、精度低等问题,提出方程式赛车目标检测算法。在图像预处理阶段,裁剪图片中无正样本部分,图片被小幅随机缩放平移。在网络结构上,调整ShuffleNetv2的结构,加强对颜色、光照和边缘等浅层特征的关注,利用特征金字塔对输出特征进行融合处理,基于广义焦点损失优化损失函数,获取正样本的类别和位置信息。实验结果表明:在FSACOCO数据集,文中算法的平均精度达到97.9%,浮点运算量为1.14 GFLOPs,优于其他对比算法。
-
单位湖北汽车工业学院; 东风电子科技股份有限公司