摘要

受电离层变化影响,短波通信频率如何实现优选一直是影响短波通信效果的关键。针对目前短波频率预测方法在远程通信中出现的预测精度不高、不能较好满足通信需要的现状,提出一种基于历史通信数据的卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)相结合的预测模型实现对短波通信频率值进行预测,并与单特征、多特征输入长短期记忆神经网络(LSTM)预测模型进行对比。仿真结果表明,该模型能够实现短波通信频率预测且相对于单特征输入LSTM预测用时更短、多特征输入LSTM预测精度更高,具有一定的可行性。

  • 单位
    中国人民解放军海军大连舰艇学院