稀疏子空间聚类是处理高维数据聚类的有效途径,而相似度矩阵的构造是稀疏子空间聚类的关键一步。文章引入子空间追踪算法来构造相似度矩阵,并由此给出了保证特征选择和特征再选择的充分条件。数值实验表明,子空间追踪算法所选择的原子相比经典的正交匹配追踪算法,其选择的原子更具代表性,精确特征选择率更高,聚类误差也得到了保留甚至更低。