摘要

为了改善反向传播(BP)神经网络算法过度依赖初始参数,导致网络收敛速度慢,容易陷入局部极小值的问题,提出利用改进的粒子群优化(IPSO)算法,对BP神经网络的参数进行优化,找出合适的初始权值和阈值。该文算法在基本粒子群优化(PSO)算法中增加了基于四分位数的选择策略,引入遗传算法的自适应变异概率作为扰动概率,加入基于个体自身适应度值与种群平均适应度值比值的自适应扰动策略。该文算法IPSO-BP对训练图像Lena、测试图像Cameraman和验证图像Peppers效果都有明显的提高,经过IPSO-BP训练的模型峰值信噪比(PSNR)和均方误差(MSE)明显好于惯性权重线性递减的粒子群优化-反向传播(LDWPSO-BP)、基于动态加速因子的粒子群优化-反向传播(PSO-DAC-BP)、基于正态分布衰减惯性权重的粒子群优化-反向传播(NDPSO-BP)、自适应变异粒子群优化-反向传播(ADVPSO-BP)、遗传算法-反向传播(GA-BP)以及天牛须搜索-反向传播(BAS-BP),PSNR在7种算法中最大,MSE在7种算法中最小。虽然IPSO-BP在图像Lena上的压缩率(CR)小于PSO-DAC-BP和BAS-BP,在Cameraman上的CR小于NDPSO-BP、ADVPSO-BP和GA-BP,但相差不超过0.01和0.006。

全文