摘要
为解决特征选择ReliefF算法在利用欧氏距离选取近邻样本过程中,算法稳定性差以及选取的特征子集分类准确率低的问题,提出了一种利用最大信息系数(MIC)作为近邻样本选择标准的MICReliefF算法;同时,以支持向量机(SVM)模型的分类准确率作为评价指标,并多次寻优,以自动确定其最优特征子集,从而实现MICReliefF算法与分类模型的交互优化,即MICReliefF-SVM自动特征选择算法。在多个UCI公开数据集上对MICReliefF-SVM算法的性能进行了验证。实验结果表明,MICReliefF-SVM自动特征选择算法不仅可以筛除更多的冗余特征,而且可以选择出具有良好稳定性和泛化能力的特征子集。与随机森林(RF)、最大相关最小冗余(mRMR)、相关性特征选择(CFS)等经典的特征选择算法相比,MICReliefF-SVM算法具有更高的分类准确率。
- 单位