摘要
提出了一种基于工业互联网和多传感器数据的电机故障诊断方法。通过各类传感器在线实时得到电机的电压、电流、振动、温度等信号的瞬时值,并转化为表征电机状态的各个特征参数。根据各个特征参数在各个故障模式下的变动情况,得到各个故障模式下故障特征及其隶属度。把故障特征与故障模式之间的关系分为充分条件和必要条件关系。按照充分条件和必要条件分类后,对每个故障模式对应的2类条件下的故障特征的隶属度进行融合,最后得出每个故障模式的隶属度,为远程运维系统决策服务。该方法既可以部署在电机远程运维工业互联网的边缘设备中,也可以部署在云平台服务程序中,实现快速而可靠的电机故障诊断。