摘要

为提高工程噪音环境中低信噪比微震信号的自动识别率及其P波自动拾取准确率,结合Allen算法能快速自动拾取震动信号的优点及Bear算法善于拾取低信噪比震动信号P波初至的优势,在Allen算法的基础上,引入Bear算法的加权因子和特征函数,对Allen算法进行改进,提出适用于工程尺度的微震信号及P波初至自动识别的AB(Allen coupled with Bear algorithm)算法。分析AB算法对信号振幅或频率变化的敏感性以及拾取效果,结果表明:(1)AB算法能准确识别微震信号也能同时准确自动拾取信号的P波初至;(2)AB算法的加权因子K、特征函数CF,ε值对频率和振幅变化的敏感性高于Allen算法;(3)AB算法对振幅变化比对频率变化敏感;(4)工程尺度下AB算法微震信号的拾取率高于Allen算法,且P波自动拾取准确率也高于Allen算法。将AB算法用于分析锦屏深部地下实验室实测微震信号:对于弱信号,基于AB算法拾取结果进行微震源定位,定位结果具有更高的可靠性与稳定性;AB算法是一种行之有效,计算简单,适合实时监测微震信号识别及其P波初至拾取。

全文