摘要

随着基于位置社交网络的迅速发展,兴趣点序列推荐逐渐成为近年来研究热点之一。针对现有推荐方法忽略签到数据中的全局信息,未充分考虑序列签到数据之间的时空间隔问题,本文提出一种融合全局特征的时空网络兴趣点推荐算法。该方法利用关系图神经网络获取签到数据异构网络图的全局特征,将时空门控融入传统门控结构中,融合全局特征对用户移动行为进行建模,再引入自注意力机制学习用户偏好向量表示。最后,在两个真实数据集上进行实验比较与分析,实验结果表明所提方法推荐性能优于同类算法,验证了算法的有效性。