摘要
在自然计算方法中,种群规模大,计算复杂度高;种群规模小,容易陷入局部最优.本文提出多空间协同进化(Multispace Coevolution,简称MSC)的自然计算方法,该方法适用于各种基于种群进化的优化算法,不依赖于算法进化的具体步骤,具有普适性.在传统的生物种群进化的基础上,将大种群分解为个数有限的小种群,部分小种群组成进化空间,另一部分构成指导空间,两个空间拥有不同的功能,指导空间通过特定的信息传递方式将经验概括信息传递到进化空间,从而使整个种群协同进化.将该策略分别应用到粒子群优化算法(PSO)和遗传算法(GA)中,并与标准粒子群算法、遗传算法以及目前主流的针对大规模问题进行优化的7个算法对比,在高维测试函数中,结果表明,寻优性能方面新的种群进化算法相比其他算法提高80%左右,具有普适性.
- 单位