摘要
为有效保障智慧仓储系统的物资供应能力,对各类电力物资进行准确的需求预测是保证物资采购量和稳定高效供应的基础。针对现有智慧仓储系统接入数据少和难以支撑模型训练的问题,提出一种结合蒙特卡洛模拟和改进长短期记忆网络(long short-term memory, LSTM)的电力物资需求预测方法。首先根据初始数据集的分布和特征,采用蒙特卡洛方法模拟扩充数据集,同时利用KL(kullback-leibler)散度验证生成数据集的一致性,最后建立基于引导聚集算法的改进LSTM电力物资需求预测模型,提高模型的泛化能力和稳定性。通过仿真试验,所提模型有效提高了训练集可用数据过少前提下的电力物资预测精度。
-
单位华北电力大学; 电子工程学院