摘要

在激光雷达障碍物检测中,由于数据密度分布不均匀,传统DBSCAN聚类算法无法同时对近距离和远距离目标实现良好聚类,容易导致漏检和误检。为了解决这个问题,改进了传统DBSCAN算法聚类邻域半径ε参数的选值方法,不同于传统DBSCAN算法在聚类过程中使用统一的聚类邻域半径,而是调整为根据目标距离变化而变化的自适应聚类邻域半径。首先根据激光雷达扫描线分布求出相邻两条扫描线的间距建立ε*列表,然后依据每个扫描点的坐标值在列表中查找出对应的列表值,最后通过线性插值法确定对应的邻域半径。福特数据集的实验结果表明,优化之后的DBSCAN算法无论是对近距离目标还是远距离目标,其聚类效果均得到明显改善。与传统算法相比,障碍物检测正检率提高了17.52%。