摘要
为实现阿尔茨海默症(AD)的医学影像分类,辅助医生对患者的病情进行准确判断,本研究对采集的34名AD患者、35名轻度认知障碍患者和35名正常对照组成员的功能磁共振影像进行特征提取和分类,具体思路包括:首先利用皮尔逊相关系数计算脑区之间的功能连接,然后采用随机森林算法对被试不同脑区之间的功能连接进行重要性度量及特征选择,最后使用支持向量机分类器进行分类,利用十倍交叉验证估算分类准确率。实验结果显示,随机森林算法可以对功能连接特征进行有效分析,同时得到AD发病过程的异常脑区,基于随机森林和SVM建立的分类模型对AD、轻度认知障碍的识别具有较好的效果,分类准确率可达90.68%,相关结论可以为AD的早期临床诊断提供客观参照。
- 单位