摘要

为了解决地面PM2.5监测网络在空间和时间覆盖受限的问题,提出了基于宽时空覆盖的卫星气溶胶光学厚度AOD,利用Stacking方法建立地面PM2.5浓度估算模型,将AOD、PM2.5和各气象参数以及与PM2.5排放有关的数据进行训练,使用改进网格搜索对模型超参数进行优化,通过对多重共线性分析,建立基于Stacking的最优PM2.5浓度估算模型。选取2016-01-01—2016-12-31的数据作为实验对象,结果表明:相比于随机森林、GBRT和XGBoost 3种模型,使用岭回归作为元学习器的Stacking模型性能更优,可见Stacking适用于大范围地理区域的大气污染监测。