基于模糊超图神经网络的节点分类方法

作者:熊婉悦; 徐峰; 黄宇廷; 韩星宇; 范自柱*
来源:华东交通大学学报, 2024, 1-8.
DOI:10.16749/j.cnki.jecjtu.20240326.013

摘要

【目的】超图神经网络(Hypergraph neural networks, HGNN)具有学习类间唯一性和类内共性的能力,可以显著提高学习性能。但是,传统HGNN方法缺乏决定低维数据节点间如何进行连接交互的强关系归纳。针对此问题,提出一种基于模糊理论的模糊HGNN (Fuzzy HGNN, FHGNN)节点分类算法,根据数据节点的特征信息构建超图结构,加强了图的节点信息对节点连接的影响。【方法】FHGNN首先采用了一个边聚焦的GNN,通过边标签的迭代更新进行边预测。并根据边预测的输出设计模糊隶属度函数,以实现更精确的节点间连接关系表示。最后通过得到的关系表示构造超图,并再次对节点进行分类训练得到结果。在FHGNN中使用了边标签损失函数和节点标签损失函数并分别对其参数进行训练学习。【结果】实验结果表明,所提的FHGNN方法更能够适应小规模低维数据,并在节点分类任务上取得好的效果。【结论】对于不同数据集的分类任务,FHGNN可以更有效学习节点的相关特征信息,提高学习的效果。

全文