摘要

牵引电机是动车组动力传动系统中的关键部件,在牵引电机故障中最常见的故障为牵引电机接地故障。通过对某动车组牵引电机控制单元的历史数据挖掘,实现对牵引电机接地故障的预测。数据挖掘建模使用了RBF神经网络、决策树和支持向量机3种机器学习算法。试验结果表明,3种算法的预测准确度均高于84%,其中决策树相较于RBF神经网络和支持向量机,具有更高的预测精度,模型预测精度达到85.6%。因此,选取决策树模型预测动车组牵引电机接地故障的发生。

  • 单位
    中车唐山机车车辆有限公司