基于BP神经网络的COREX铁水硅含量预测模型

作者:文冰洁; ****; 周恒; 顾凯
来源:钢铁研究学报, 2018, 30(10): 776-781.
DOI:10.13228/j.boyuan.issn1001-0963.20180085

摘要

COREX铁水硅含量偏高且易波动一直是生产过程中面临的难题,而精准预测COREX铁水硅含量可为稳定并降低铁水硅含量提供理论依据和技术参考。利用BP神经网络建立了COREX铁水硅含量预测模型,通过相关分析法确定模型的输入参数,采用计算邓氏关联度的方式确定各参数对应的滞后炉次。并利用某钢厂COREX实际生产数据分别进行学习和验证,结果表明预测误差为±0.1%时,其命中率为80%。为提高模型的预测精度,在该模型的基础上,采用时间序列推移法,实时更新训练样本,优化模型。研究结果表明,改进后的模型预测误差为±0.1%时,命中率是90%,提高了模型预测精度。该模型可为判断铁水硅含量变化以及后续操作提供理论依据。

全文