基于多任务深度学习的文本情感原因分析

作者:余传明; 李浩男; 安璐*
来源:广西师范大学学报(自然科学版), 2019, 37(01): 50-61.
DOI:10.16088/j.issn.1001-6600.2019.01.006

摘要

多任务学习利用不同任务之间的相似性辅助决策,与单任务学习相比,多任务学习能够利用更多的信息,从而可以弥补单任务学习信息利用不足的缺陷。本文选择NTCIR-ECA数据集中的中文和英文文本数据作为实验数据,以情感原因分析作为研究任务,提出了一种结合多任务学习和深度学习的模型MTDLM(multi-task deep learning model),实现不同语种下的情感原因分析。实验结果表明,在数据不平衡的情况下,MTDLM模型对英文语种的情感原因识别的最优F值为39%,优于单任务学习(F值为0)和传统基线模型(LR的F值为33%),从而验证了模型的有效性。

全文