摘要
为了实现对钢卷仓储吞吐量的长期预测,以便帮助钢铁物流园区提前规划库位分配和装备准备,降低物流成本和物流园区的空置率,提出基于粒度计算和模糊规则的钢卷仓储吞吐量长期预测模型。通过时间序列分解模型将原始时间序列分解,分别将分解后的数据划分为多个数据粒并对其进行聚类,根据信息粒的类别建立模糊逻辑关系。根据模糊规则实现对未来7天的预测并不断迭代实现对四周的吞吐量预测。选用某无水港2014年至2018年的吞吐量数据进行验证,实验结果表明:所提出的预测方法结果能够满足钢铁物流规划需求,长期预测精度高于ARIMA模型。
- 单位