摘要
近年来,在基于深度学习的SAR舰船目标检测算法中,总是存在着对紧密排列的舰船目标和小尺寸舰船目标漏检的问题。针对上述问题,提出了一种改进的YOLOX算法,用于减少紧密排列的舰船目标和小尺寸舰船目标的漏检率。采用Mish代替LeakyReLU的方法改进了激活函数,从而提高了模型的泛化能力;采用Soft-NMS代替传统NMS,减少传统NMS所导致的漏检;在CSPDarkNet末尾加入卷积块注意力机制模块(CBAM),用于提升网络提取特征的效果。在公开的SAR舰船数据集SSDD上进行了实验。结果表明,算法经过改进,有效减少了YOLOX在检测紧密舰船目标和小尺寸舰船目标时发生的漏检现象。
- 单位