摘要
针对电力大数据存在冲击数据、无效数据等异常值导致真实规律难以挖掘的问题,提出一种基于改进GRU的电力大数据分析模型。该模型首先分析了异常值导致数据规律失真的情况,提出利用自适应阈值的小波滤波进行数据清洗;其次以单数据周期为分段点对数据进行分段,以各数据段同一时刻的记忆求和均值为标准记忆;最后,根据数据段的质量改进GRU记忆能力,即保留质量好的数据段记忆、删除质量差的数据段记忆。为了验证模型的性能,选择光伏发电数据进行实验,结果表明:本模型在数据质量较高时的预测准确率比ARIMA、LSTM和标准GRU分别提高了61%、30%和25%,数据质量较差时的预测准确率分别提高了76%、16%和11%。
- 单位