摘要

当前的神经机器翻译系统大多采用自回归的方式进行解码,这种串行解码的方式导致解码效率低下。与之相比,非自回归的方式通过并行解码显著提高了推断速度,受到研究人员的广泛关注。然而,由于缺乏目标序列内词语间的依赖关系,非自回归方法在性能上还存在较大差异。近些年,有很多工作研究如何缩小非自回归机器翻译(NART)和自回归机器翻译(ART)之间的翻译质量差距,但是目前缺少对现有方法和研究趋势的梳理。该文不仅从捕获依赖关系的角度对NART方法进行了详细分类和总结,而且对NART研究面临的挑战进行了展望与分析,并归纳整理了相关的论文,还进一步根据方法、发表会议和任务等进行了分类。