摘要

为了进一步提升民航潜在有价值旅客的预测准确度,提出一种基于LightGBM的民航潜在旅客预测模型。首先,通过改进遗传算法的选择算子和交叉变异概率,改善标准遗传算法易于陷入局部最优和收敛速度慢的问题,并使用改进遗传算法(IGA)进行特征选择,找到最优特征变量;其次,对LightGBM模型进行训练,使用Optuna框架优化超参数,得到最终的旅客预测模型;最后,通过LightGBM模型对民航旅客进行类型预测,进而找到具有潜在价值的旅客。实验结果表明,基于IGA-Optuna-LightGBM模型的预测准确度达到0.962,AUC值达到0.991,预测性能优于其他模型。

全文