摘要

提出一种基于车辆方波脉冲时序图的交通流参数实时检测算法,克服了现有方法易受光线变化及天气影响、运算量大等缺陷,提高了实时交通流参数检测的准确率,为智能交通系统提供有力支撑。研究基于虚拟检测线,将交通监控视频降维处理为包含时间和空间信息的时空图,而后对时空图进行前景提取,生成二值化时空图的垂直投影,针对像素累积图设计了系统性去噪及车辆对象识别方法,进而生成车辆方波脉冲时序图,实时检测出车流量、车头时距、时间占有率、车辆速度并进行车辆分类。分析结果表明,所提出的方法能克服雨雪天气、夜晚光线等干扰,快速而准确地进行多车道交通流参数获取,计算负荷小,方法准确率高达97.32%,可满足智能交通系统对交通流参数检测实时性和精度的要求。