特征提取是基于微动特征雷达目标识别的关键一环。传统方法提取的特征为线性、浅层的,导致表征微多普勒效应的能力有限。针对这些问题,采用非线性网络进行特征学习,建立了基于微多普勒效应的飞机目标识别深度网络。通过构建处理微多普勒效应的卷积神经网络(CNN)模型,从微多普勒频域数据中自动提取非线性深层次属性特征,实现空中目标分类识别。在实际测量的微多普勒频域数据上的大量实验结果表明,所提方法具有良好的目标识别性能和泛化性能。