摘要

目前,大部分将知识图谱引入推荐系统的方法只是将已知的表层知识图谱实体进行引入,没有对图谱的内在关系进行预测和挖掘,因此无法利用知识图谱中的隐藏关系。本文针对上述问题,提出联合学习推荐模型E-TUP(Enhance Towards Understanding of User Preference),使用E-CP(Enhance Canonical Polyadic)进行知识图谱补全并将完整信息进行传递。利用储存空间负采样方法,将优质负例三元组进行存储,并随训练过程进行更新,以提高知识图谱补全中负例三元组的质量。链接预测实验结果显示,储存空间方法使E-TUP模型链接预测准确率对比现有模型提升最高10.3%。在MovieLens-1m和DBbook2014数据集上进行推荐实验,在多个评价指标上取得最佳结果,对比现有模型实现最高5.5%的提升,表明E-TUP可以有效利用知识图谱中的隐藏关系提高模型推荐准确率。最后基于汽车维修数据进行推荐实验,结果表明E-TUP可以有效推荐相关知识。