摘要

提出了一种从车载激光扫描数据中层次化提取多类型目标的有效方法。该方法首先利用颜色、激光反射强度、空间距离等特征,生成多尺度超级体素;然后综合超级体素的颜色、激光反射强度、法向量、主方向等特征利用图分割方法对体素进行分割;同时计算分割区域的显著性,以当前显著性最大的区域为种子区域进行邻域聚类得到目标;最后结合聚类区域的几何特性判断目标可能所属的类别,并按照目标类别采用不同的聚类准则重新聚类得到最终目标。试验结果表明,该方法成功地提取出建筑物、地面、路灯、树木、电线杆、交通标志牌、汽车、围墙等多类目标,目标提取的总体精度为92.3%。

  • 单位
    武汉大学; 武汉大学测绘遥感信息工程国家重点实验室