联邦无监督表示学习(英文)

作者:张凤达; 况琨*; 陈隆; 游兆阳; 沈弢; 肖俊; 张寅; 吴超; 吴飞; 庄越挺; 李晓林
来源:Frontiers of Information Technology & Electronic Engineering, 2023, 24(08): 1181-1194.

摘要

为利用分布式边缘设备上大量未标记数据,我们在联邦学习中提出一个称为联邦无监督表示学习(FURL)的新问题,以在没有监督的情况下学习通用表示模型,同时保护数据隐私。FURL提出了两个新挑战:(1)客户端之间的数据分布转移(非独立同分布)会使本地模型专注于不同的类别,从而导致表示空间的不一致;(2)如果FURL中客户端之间没有统一的信息,客户端之间的表示就会错位。为了应对这些挑战,我们提出带字典和对齐的联合对比平均(Fed CA)算法。FedCA由两个关键模块组成:字典模块,用于聚合来自每个客户端的样本表示并与所有客户端共享,以实现表示空间的一致性;对齐模块,用于将每个客户端的表示与基于公共数据训练的基础模型对齐。我们采用对比方法进行局部模型训练,通过在3个数据集上独立同分布和非独立同分布设定下的大量实验,我们证明FedCA以显著的优势优于所有基线方法。