摘要

皮肤是人体最大的器官,面色相对于人体其他生物属性具有更便捷、更稳定的特性。因此,设计一个完整有效的面色分级系统是非常有意义的。本文中,面色分级系统被分为皮肤分割和面色分级2部分。针对皮肤分割任务,在生成对抗网络框架下搭建了一个多尺度特征融合网络,相对于传统的语义分割网络,本文的分割模型充分地利用了每一层特征图的信息。在面色分级实验中,首先在归一化rgb、HSV和Lab颜色空间下使用1 000幅图像分别训练了支持向量机(SVM)和BP神经网络分类器,128幅皮肤图像被用作测试集,正确率在73%~76%;之后将颜色特征与皮肤区域纹理特征融合进行学习,使用SVM分类的正确率为85%,使用BP神经网络分类的正确率达到了91%。