基于EMD和RBFNN的地铁辅助逆变器故障检测

作者:成亮; 高军伟; 张彬; 姚德臣; 冷子文
来源:青岛大学学报(工程技术版), 2014, 29(02): 43-48.
DOI:10.13306/j.1006-9798.2014.02.010

摘要

针对地铁辅助逆变器故障信号非平稳的特征,提出了一种基于经验模态分解方法和径向基神经网络的地铁辅助逆变器的故障诊断方法,并应用经验模态分解方法对采集的非平稳的原始信号进行处理,将原始信号分解成多个平稳的本征模函数(intrinsic mode function,IMF),同时,采用K-均值聚类算法确定RBF神经网络的模型参数,并借助径向基神经网络的分类能力对特征向量进行故障检测。仿真结果表明,基于K-均值聚类算法的RBF神经网络,在48个测试样本中有46个正确,准确率为95.8%,高于标准RBF神经网络77.0%的准确率,说明其准确性明显高于标准的径向基神经网络。该研究能够满足地铁辅助逆变器故障检测对准确性的要求,可高效识别地铁辅助逆变器的故障。

全文