摘要
传统卷积神经网络在抽油机故障诊断领域中,面向单一工况示功图诊断已取得较好精度,但在处理复合工况示功图时,诊断精度仍较低。论文研究了改进卷积神经网络(CNN)和视觉Transformer(Vi T)的复合工况示功图诊断技术,设计了融合Vi T和非方卷积核的混合CNN结构,更有效地提取复合工况示功图特征。首先通过三元组损失对网络进行训练,使用训练完成的网络建立示功图特征检索库,再将示功图特征与检索库中特征计算相似度向量以实现诊断。实验结果表明,混合网络结构在测试集上诊断精度达95%以上,优于传统CNN模型,有效提升了复合工况示功图诊断精度。
-
单位东南大学; 南京富岛信息工程有限公司; 自动化学院